
Electrons in GaAs ÕGa1−xAlxAs superlattices: Spin and orbital states in a magnetic field

Pawel Pfeffer* and Wlodek Zawadzki
Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland

�Received 19 November 2009; revised manuscript received 23 January 2010; published 9 June 2010�

Spin and orbital properties of electrons in GaAs /Ga1−xAlxAs superlattices �SLs� in an external longitudinal
and transverse magnetic field are considered. A five-level P ·p model of the band structure is used, accounting
for nonparabolicity and nonsphericity of the conduction band in III-V compounds as well as their inversion
asymmetry. The electron-spin g values are computed as functions of superlattice spacings. It is shown that, in
the transverse-field configuration, the g value is different for various electron locations in an SL. Transverse
and longitudinal cyclotron masses are calculated and compared with available experimental data for various
GaAs /Ga1−xAlxAs SLs. Finally, orbital electron states in short SLs in a transverse magnetic field are described
for different field intensities. In addition to the standard Landau levels unexpected states are found whose
energies have a strong quadraticlike field dependence. The origin of the states is investigated.
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I. INTRODUCTION

Electrons in semiconductor superlattices �SLs� have been
a subject of intensive studies because of their inherent fun-
damental properties as well as important applications. Super-
lattices, since their creation in the early 1970,1 belong with
other heterostructures to “hand-made” quantum systems.
From their beginning SLs were treated theoretically by meth-
ods developed earlier for atomic crystals. Thus, the standard
notions of Bloch functions, energy bands, forbidden gaps,
and Brillouin zones were employed for their description.2–5

As far as experimental studies are concerned, an external
magnetic field was extensively used as an important tool
both in optical and transport investigations. Physically, dif-
ferent situations are created for a magnetic field B parallel or
transverse to the growth direction. For B� �parallel to the
growth direction�, one can separate the motion into an elec-
tric component along the growth and a magnetic component
transverse to the growth �parallel to interfaces�. On the other
hand, for B� �transverse to the growth�, the motion cannot
be separated since both the periodic potential of an SL and
the magnetic field B� affect the motion along the growth.

The orbital and the spin properties of electrons are usually
characterized by an effective mass m� and an effective spin
�Lande� factor g�, respectively. As to electrons in SLs, one
studied mostly the effective masses while little attention was
paid to the spin g values. Wu et al.4 calculated spin energies
in Ga0.47In0.53As /Al0.48In0.52As superlattices without discuss-
ing the g values. The recent interest in spintronics makes the
electron-spin properties in various systems of primary impor-
tance. Thus, we investigate the behavior of the electron spin
in SLs. In addition, we study theoretically also some orbital-
electron properties in short SLs and, in particular, we report
on unexpected electron energies and states in the transverse-
field configuration B�.

We consider III-V SLs and, more specifically, the
GaAs /Ga1−xAlxAs system. Among numerous heterostruc-
tures, the system GaAs /Ga1−xAlxAs has a unique position.
First, GaAs is after silicon the most important semiconductor
material. Second, the system GaAs /Ga1−xAlxAs has well-
established parameters which allows the theorists to describe

subtle phenomena. Third, due to the advanced growth tech-
nology the electrons in GaAs quantum wells have very high
mobilities making it possible to detect even weak effects.
Thus, it is of interest to describe precisely spin and orbital
electron energies in GaAs /Ga1−xAlxAs quantum wells not
only for their own sake but also as a model for other hetero-
structures. From the theoretical point of view, a description
of magneto-optical effects in GaAs-type materials is not an
easy task since GaAs is a medium-gap semiconductor. As a
result, its band structure exhibits features characteristic of the
narrow-gap materials, but it is insufficient to treat them by
the models normally used for such systems. We showed in
our previous work on bulk GaAs and InP that the simplest
adequate description of their band structure is given by the
so-called five-level P ·p model �5LM, see Ref. 6�. The use-
fullness of 5LM was confirmed in the work with quantum
wells,7,8 so we use this model in our present calculations.

An important feature of the III-V compounds is a bulk-
inversion asymmetry �BIA� of these materials. As is known
for a long time,9 the BIA results in a spin splitting of energies
for a given direction of the wave vector k. It is of interest to
investigate how this spin splitting behaves in the presence of
an external magnetic field. One can rephrase the problem by
asking how the Zeeman spin splitting caused by the magnetic
field combines with the spin splitting caused by the BIA. An
important advantage of the 5LM is that it includes the BIA
mechanism of the spin splitting. In the following we will be
concerned with symmetric quantum wells, so that the
Bychkov-Rashba spin splitting, caused by the structure-
inversion asymmetry, does not come into play.10

In studying orbital and spin electron energies in
GaAs /Ga1−xAlxAs single quantum wells other authors used
an expansion of the conduction-band nonparabolic disper-
sion E�P�, in powers of the generalized momentum P=p
+eA.11,12 This was first developed by Ogg.13 In the above
method, the expansion coefficients for GaAs are taken from
bulk magneto-optical data. The electric potential of the well
is added at the end, so that this approach can be qualified as
semiclassical. The band-edge values of m0

� and g0
� for the

bulk Ga1−xAlxAs are taken into account but the expansion
coefficients for the dispersion E�k� are taken the same as for
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GaAs. The final results obtained by this method are qualita-
tively similar to ours but quantitatively they are not the same
�see Ref. 7�. Our approach uses fundamental band param-
eters �energy gaps, spin-orbit energies, and momentum ma-
trix elements�, includes the heterostructure potential from the
very beginning and is, in the final count, more exact. Last,
but not least, the Ogg formalism is valid only for weakly
nonparabolic energy bands since it is an expansion up to the
P4 terms. On the other hand, our approach is valid also for
narrow-gap systems because it takes exactly into account five
interacting bands, see discussion in Ref. 7.

Our paper is organized as follows. In Sec. II the P ·p
theory using 5LM is briefly presented. In Sec. III A the 5LM
is used to calculate the electron-spin g values for SLs. Sec-
tion III B contains description of experimental effective
masses in GaAs /Ga1−xAlxAs SLs for both B� and B� field
configurations. In Sec. III C we study orbital properties of
electrons in very short SLs in the B� configuration and re-
port on until now unobserved states. The paper is concluded
by a summary.

II. THEORY

Our calculation of the spin and the cyclotron electron en-
ergies in GaAs /Ga1−xAlxAs is based on the five-level P ·p
model. The 5LM includes explicitly the �8

c, �7
c, �6

c, �8
v, and

�7
v levels of the band structure at the center of the Brillouin

zone, see Fig. 1. There exist three interband matrix elements
of momentum: P0, P1, and Q, and three matrix elements of

the spin-orbit interaction: �0, �1, and �̄ �see the definitions
in Ref. 6�. Within 5LM, there are 14 basis �Luttinger-Kohn�
functions and the resulting eigenenergy problem consists of
14 coupled differential equations. We solve the equations by
substitution. This is not possible exactly, so we use an itera-

tion procedure with respect to the matrix elements Q �to the
order of Q2 terms�. After considerable manipulation the ef-
fective Hamiltonian for the spin-up and spin-down electron
states in the conduction band is obtained. In addition to the
approach presented in Ref. 7 we include the off-diagonal
free-electron term in the initial P ·p 14�14 matrix. The gen-
eral theoretical framework is the same for B parallel and
transverse to the growth direction. We keep B �z in both
cases and use the vector potential A= �−By,0 ,0�. In the par-
allel case the SL potential V�z� changes in the z direction,
while in the transverse case the SL potential V�y� changes in
the y direction. The effective 2�2 Hamiltonian for electrons
in the conduction �6

c band is, for both field configurations,

Ĥ = �Â+ K̂

K̂† Â−
� , �1�

where

Â+ = V�xi� +
1

2�
i=1

3

Pi
1

mI
��E,xi�

Pi +
EB

2
gI

��E,xi�

+ EP0
EB

K11

2m0
P−P+ −

EQ

12m0
2 �EP0

D0 + EP1
D1� , �2�

where

D0 = Pz�K1P−P+ + K2P+P−�Pz + 2�K5P−P+P−P+ + K6P+
2P−

2

+ K7P−
2P+

2� �3�

and

D1 = Pz�K3P−P+ + K4P+P−�Pz + 2�K8P−P+P−P+ + K9P+
2P−

2

+ K10P−
2P+

2� . �4�

In the expression for Â− one should change the sign of gI
� and

K11 terms and exchange P+ with P−. The functions Ki, for

i=1,2 ,3 , . . . ,10, are defined in Ref. 7, K11=8 / �9Ẽ0G̃0� and
EB=�BB, where �B=e� /2m0 is the Bohr magneton.

The effective mass mI
� is

m0

mI
��E,xi�

= 1 + C −
1

3
�EP0

	 2

Ẽ0

+
1

G̃0


 + EP1
	 2

G̃1

+
1

Ẽ1



+

4�̄�EP0
EP1

3
	 1

Ẽ1G̃0

−
1

Ẽ0G̃1


� �5�

and the gI
� factor is

gI
��E,xi� = 2 + 2C� − 2EP0

Cf
�

�z
K11

�

�z
+

2

3

��EP0
	 1

Ẽ0

−
1

G̃0


 + EP1
	 1

G̃1

−
1

Ẽ1



−

2�̄�EP0
EP1

3
	 2

Ẽ1G̃0

+
1

Ẽ0G̃1


� , �6�

where

FIG. 1. Five-level model for the band structure of GaAs-type
semiconductors. Energy gaps, spin-orbit energies, and interband
matrix elements of momentum and of the spin-orbit interaction are
indicated. Letters C and C� mark symbolically far-band contribu-
tions to the effective mass and the spin g� factor of conduction
electrons, respectively.
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Ẽi = Ei − E + V�xi� , �7�

G̃i = Gi − E + V�xi� . �8�

We use the notation EP0
=2�2P0

2 /m0, EP1
=2�2P1

2 /m0, and
EQ=2�2Q2 /m0. The mass mI

� and the factor gI
� defined in

Eqs. �5� and �6� do not represent final electron values in an
SL but only the first iterative approximations to these quan-
tities, see Ref. 7.

For GaAs quantum wells �QWs� we use m� /m0=0.066,
g�=−0.44 and, the energy band parameters: E0=−1.519 eV,
E1=2.969 eV, G0=E0+�0=−1.86 eV, and G1=E1+�1
=3.14 eV. For Ga1−xAlxAs barriers we use: m� /m0=0.066
+0.0174x+0.145x2,14 g�=−0.44+4.25x−3.9x2,15 VB
=0.8x eV, and E0=−�1.519+1.36x+0.22x2� eV, E1
= �2.969+0.971x� eV, G0=E0+�0=−�1.86+1.229x
+0.291x2� eV, and G1=E1+�1= �3.14+0.98x� eV, where x
is the Al content �cf. Ref. 7�. The interband matrix elements
of momentum and of the spin-orbit interaction are taken to
be independent of x: EP0

=27.865 eV, EP1
=2.361 eV, EQ

=15.563 eV, and �̄=−0.061 eV.
The interband matrix elements of momentum are defined

as

P0 =
− i�

m0�
�SpxX� ,

P1 =
− i�

m0�
�SpxX�� ,

Q =
− i�

m0�
�XpyZ�� =

i�

m0�
�X�pyZ� �9�

and the spin-orbit energies are

�0 =
− 3i�

4m0
2c2 �X��V0,p�yZ� ,

�1 =
− 3i�

4m0
2c2 �X���V0,p�yZ�� ,

�̄ =
− 3i�

4m0
2c2 �X��V0,p�yZ�� . �10�

The nondiagonal component in Eq. �1�, related to the bulk
inversion asymmetry, is a sum of two terms

K̂ = B̂1 + B̂2, �11�

where

B̂1 =
�2

�3 ��E,xi��P+Pz
2 −

1

4
�P−P+

2 + P+
2P−�� , �12�

B̂2 =
1

�2�3
��E,xi�P−

3 , �13�

in which

��E,xi� =
4Q

3 �P0P1	 1

G̃0G̃1

−
1

Ẽ0Ẽ1



−

�̄

3� P0
2

Ẽ0G̃0

	 2

Ẽ1

+
1

G̃1


 −
P1

2

Ẽ1G̃1

	 2

G̃0

+
1

Ẽ0


�� .

�14�

Since in both parallel and transverse configurations we

keep B �z, we have for P̂�= �1 /�2��Px� iPy� the same forms

P� =
�

�2
	kx −

eBy

�
�

�

�y

 . �15�

For the parallel case B�, when xi=z, the motion compo-
nents along z and in the plane x-y may be separated, the
wave functions have the general form 	=exp�ikxx�
n�y
−y0��l�z�, where 
n are the harmonic oscillator functions,

and the P̂� operators raise and lower the exp�ikxx�
n�y
−y0� functions. The main kinetic term in Eq. �2� takes then
the form pz�1 /2mI

��E ,z��pz+ �1 /2mI
��E ,z���Px

2+ Py
2�. The cor-

responding calculations are presented in Ref. 7.
In the following we concentrate more on the transverse

configuration B� for which xi=y. In this case the motion
components along z and in the x-y plane are not separable,
the wave functions have the general form 	=exp�ikxx
+ ikzz��l�y−y0�, and the operators P� of Eq. �15� do not have
raising and lowering properties, see Ref. 7.

Acting on the above wave functions the operator p̂x gives
�kx and p̂z gives �kz. Since we are interested in the undoped
SLs we assume that the Fermi energy coincides with the
ground electric subband, so that

kz = 0. �16�

In this case the corresponding terms in the effective Hamil-
tonian are

Â� = V�y� − Cf
�

�y�

m0

mI
��E,y��

�

�y�

+
Cfm0

mI
��E,y��

y�2

L4 �
EB

2
gI

��E,y��

� EP0
EBCf	 y�2

L4 K11 −
�

�y�
K11

�

�y�



�
EQEBCf

3
	 �

�y�
F1

�

�y�
−

2y�2

L4 F2
 , �17�

where y�=y−kxL
2, in which the magnetic radius is 1 /L2

=eB /� and Cf =�2 / �2m0�. Further

F1 = EP0
�K5 − 2K6 + 2K7� + EP1

�K8 − 2K9 + 2K10� ,

�18�

F2 = EP0
�K5 − K6 + K7� + EP1

�K8 − K9 + K10� , �19�

and
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K̂ = − ��E,y��� y�

L4	1 + y�
�

�y�

 +

1

L2	 �

�y�
+ y�

�2

�y�2
� .

�20�

As to the periodic potential of an SL, we consider the
Kronig-Penney rectangular GaAs wells of the width a sepa-
rated by rectangular Ga1−xAlxAs barriers of the width b. Bar-
riers terminating the SL on both ends are assumed to be
made of the same barrier material Ga1−xAlxAs. We use the
simple boundary conditions at the interfaces

�l+ = �l−, �21�

	 1

m+
�

��l�xi�
�xi



+

= 	 1

m−
�

��l�xi�
�xi



−

. �22�

The more complete boundary conditions include the non-
diagonal spin-dependent terms due to BIA, as seen in Eqs.
�1� and �11�. If BIA mechanism is treated by perturbation
theory, the zero-order solutions �and the corresponding
boundary conditions� do not contain the off-diagonal BIA
terms and the latter is included in the form of the matrix
element of perturbation. We checked that this procedure
gives a very good approximation to the final energies, as
compared to the exact procedure including BIA also in the
boundary conditions. The above simplified procedure gives
excellent results for the spin g values in GaAs/GaAlAs quan-
tum wells, see Ref. 7. Finally, as indicated below, for the
transverse-field configuration the BIA mechanism vanishes
and also the exact boundary conditions do not contain the
off-diagonal BIA terms.

The eigenenergy is found requiring that the wave function
goes to zero at sufficiently far distances on both sides. It is
important that we treat the whole SL as a potential well, so
that the electron wave functions are standing waves, not the
running Bloch waves. This problem is discussed in some
detail in our recent work.16

The above theory describes both the nonparabolicity and
the nonsphericity of conduction band in III-V compounds.
The nonparabolicity is expressed by energy and potential de-
pendence of mI

��E ,xi� and gI
��E ,xi� in Eqs. �5� and �6�. The

nonsphericity is related to the matrix element Q and is ex-
pressed by the terms proportional to EQ. The contributions
related to the nondiagonal free-electron terms in the initial
P ·p matrix are proportional to K11. As mentioned above, the

nondiagonal term K̂ in Hamiltonian �1�, related to the bulk-
inversion asymmetry of III-V compounds, is described in the
final form by Eq. �20�. The simplest way to solve the 2�2
problem posed by Hamiltonian �1� is to find eigenfunctions
and eigenvalues of the diagonal terms and to calculate the
matrix elements of the nondiagonal terms. Since we treat
rectangular �i.e., symmetric� SLs, the wave functions of the
miniband for both spins are described by an even or an odd
function �l�y�. On the other hand, it can be seen from Eq.

�20� that the off-diagonal terms K̂ are odd functions of y. As
a consequence, the matrix element of the off-diagonal terms
vanishes and we are left with the eigenvalues of the diagonal
terms. Strictly speaking, the BIA mechanism does not come
into play for the B� configuration if the center of magnetic

potential is chosen in the middle of the structure. When the
BIA mechanism for the spin splitting is not active or is ne-
glected, the spin g factor in III-V compounds varies as a
function of increasing electron energy from the band-edge
value g0

� to the free-electron value +2.17 However, the BIA
spin splitting does not obey this rule.

III. RESULTS

Below we use our theory to calculate electron-spin g val-
ues in GaAs /Ga1−xAlxAs SLs and to describe some existing
experimental data on the effective cyclotron masses for both
B� and B� configurations. In addition, we predict and

FIG. 2. Calculated spin g factor of electrons in
GaAs /Ga0.7Al0.3As superlattices in longitudinal-field configuration
for three well widths versus barrier widths. Dashed lines—
neglecting BIA mechanism, solid lines—including BIA mechanism.

FIG. 3. The same as in Fig. 2, but for the transverse-field con-
figuration. The BIA mechanism of spin splitting is not active for
B�.
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describe unexpected orbital energies and states in short SLs
in the presence of a transverse magnetic field B�.

A. Spin g values

In Fig. 2 we show the calculated electron g values in
GaAs /Ga1−xAlxAs SLs �parallel configuration B�� for given
well widths �WWs� as functions of barrier widths �BWs�. For
a fixed BW, the g value increases as the well becomes nar-
rower. This is a direct result of nonparabolicity. When the
wells are narrow, the electron energy increases and the g
factor increases from the bulk value −0.44 tending to the
value +2. For a fixed WW, the g factor increases with the
growing BW because a bigger part of the electron wave
function is in the Ga1−xAlxAs region. The bulk-inversion
asymmetry is seen to increase the g value. Its role increases
as the wells become narrower because the value of kz “fro-
zen” in the narrower wave function increases. �The latter
should not be confused with the kz� arising due to the period-
icity of an SL.� For large barrier widths the properties of
electrons in SLs approach those in a single QW. Indeed, the
g values shown in Fig. 2 in the above limit are similar to the
values calculated in Ref. 7.

Figure 3 shows the calculated spin g values for the trans-
verse configuration B�. The qualitative and the quantitative
behaviors of g is similar for the two configurations. The main
difference with the parallel configuration B� is that, as men-
tioned in the previous section, the BIA mechanism is not
active for B�.

Finally, we investigate a dependence of the spin g factor
on a position of the center of magnetic oscillations y0=kxL

2

in the transverse configuration B�. In Fig. 4 we show the
calculations of g��B�� for three positions of y0: �1� at the
center of a well, �2� at an interface, and �3� at the center of a
barrier. It is seen that the spin factor is clearly different for
the three situations. The differences are due to band’s non-

parabolicity. It can be seen from the inset that the electron
energies in the three situations are considerably different.
Since at low temperatures the electrons will occupy the low-
est possible energies, they will be located near the well cen-
ter, so that in practice the g factor will be described by the
lowest line in Fig. 4. Thus, although one can speak, in prin-
ciple, of a breakdown of the P ·p description also for the spin
properties �in analogy to the effective mass, see Ref. 18�, in
practice the effects related to such breakdown should be
small. This result is somewhat paradoxical: it is because of
the large energy differences for various y0 that the electrons
contributing to the spin properties will come from well-
defined regions of y0 and the differences in g values will not
come into play. It should be mentioned that the electron-
energy differences for various y0 calculated in Ref. 18 are
considerably smaller than those shown in the inset of Fig. 4.
As a consequence, also the differences of the spin g values
for various y0 are very small. The reason is that the authors
of Ref. 18 considered much narrower barriers in their SL.

B. Effective masses

Now we want to discuss some aspects of the orbital be-
havior of electrons in SLs and, in particular, to describe ex-
isting cyclotron resonance �CR� experimental data. To avoid
confusion, we clearly define three effective masses of inter-
est. And so, m�

c is the mass measured in the cyclotron reso-
nance for B� while m�

c is the mass measured for B�. Finally,
the so-called transport mass mtr is related to the energy dis-
persion of an SL miniband E�kz��. This mass is given by
1 /mtr= �1 /�2kz���E�kz�� /�kz�. It is usually assumed that the
three masses are related by the formula mtr= �m�

c �2 /m�
c, see

the discussion below.
In Fig. 5 we show the data of Duffield et al.19 on m�

c, as

FIG. 4. Calculated spin g factors of electrons in
GaAs /Ga0.7Al0.3As superlattices in the transverse-field configura-
tion versus field intensity B� for three centers of magnetic oscilla-
tions y0=kxL

2: WC—well center, Inter—interface, and BC—barrier
center. The inset shows corresponding electron energies.

FIG. 5. Measured and calculated cyclotron masses in
GaAs /Ga1−xAlxAs superlattices for longitudinal- and transverse-
field configurations B� and B� versus Al content x in the barriers.
Solid lines are theoretical. Solid squares—m�

c measured by Duffield
et al. �Ref. 19� for B�, empty squares—m�

c retrieved from Ref. 19
using measured values of m�

c, and quoted values of mtr with the use
of relation �m�

c �2=m�
cmtr.
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measured by the CR in GaAs /Ga1−xAlxAs SLs for different
Al content in barriers. There is a slight increase in the mass
due to band’s nonparabolicity related to the fact that, as the
barrier height increases with the Al content, the electron en-
ergy becomes larger. Also, a higher Al content makes the
mass in Ga1−xAlxAs higher, so the average mass increases.
We added the point for x=0.3 �not shown in Fig. 3 of Ref.
19� which we determined from the data given in Fig. 2 of
Ref. 19. Our theoretical curves reproduce well the data, apart
from the fact that, using the accepted band-edge mass value
m0

�=0.066m0, the theory predicts somewhat lower masses
than the observed values.

As to the transverse configuration B�, the experimental
values of m�

c , shown in Fig. 5, have been retrieved employ-
ing the formula mtr= �m�

c �2 /m�
c using the measured values of

m�
c and given values of mtr, as quoted in Ref. 19 �see also

Ref. 12�. Again, we added the values of m�
c and m�

c for Al
content x=0.3 determined from the data given in Ref. 19.
Our theory gives a reasonable description of the experimen-
tal data. One could get a better fit to the measured values
taking a higher band-edge mass, but there is no reason to do
that. The fact that the experimental data for both m�

c and m�
c

run higher than the theory predicts can be attributed either to
a small admixture of Al in the GaAs wells �which is not very
probable� or to a nonvanishing free-electron density in the
investigated SLs. In fact, Duffield et al.18 observed directly a
nonvanishing free-electron density in similar structures.

Finally, we check the validity of the relation mtr
= �m�

c �2 /m�
c for our SLs. Namely, we can compute separately

m�
c and m�

c for low-lying Landau levels in both field configu-
rations and calculate independently the transport mass
1 /mtr= �1 /�2kz���E�kz�� /�kz�, computing prior to that the E�kz��
relation for the electric miniband at B=0. In Fig. 6 we show
the results of such calculations for varying Al content in the
barriers. The solid line shows calculated mtr while the dashed
line indicates the calculated value of �m�

c �2 /m�
c. It can be

seen that, while the two quantities coincide quite well for an
SL with high barriers �high Al content�, the coincidence be-
comes poorer for an SL with low barriers. It should be men-
tioned that our calculations are carried out assuming the con-
fining barriers at both ends of an SL to be of the same heights
as the inside barriers �i.e., for the same Ga1−xAlxAs material�.
On the other hand, “experimental” m�

c values retrieved from
Ref. 19 and shown in Fig. 5 do not depend on the validity of
the above relation, since both Duffield et al.19 and us used
the same formula.

C. New orbital states

Finally, we consider very short SLs or, more precisely, a
few periodic quantum wells placed in a transverse external
field B�. This configuration was considered before by
Zawadzki,20 Maan and others,21–23 and Duffield et al.18,19 and
it was shown both theoretically and experimentally that the
orbital electron energies in this situation depend on a posi-
tion of the center of magnetic oscillations y0=kxL

2. Three
types of magnetic orbits were identified depending on
whether an electron is located in the center of a QW, near its
wall �interface� or at the barrier. The dependence of electron

energies on the spacial position of the center y0 means that
the usual description of the cyclotron frequency �c=eB /m�

by means of the effective mass breaks down. One can inter-
pret this phenomenon as another manifestation of the prop-
erty mentioned above that, in the transverse-field configura-
tion B�, one may not separate the magnetic component of
the motion from its electric component. This leads to various
“anomalies” and “breakdowns.” In our opinion, one should
carefully distinguish between the effective-mass approxima-
tion, which is used in the initial Schrodinger equation involv-
ing the periodic potential of a heterostructure and an external
magnetic field, and the effective mass describing the final
energies. It is, in general, not surprising that in a spacially
inhomogeneous system the electron energy depends on the
center of magnetic oscillations.

We begin our considerations by a single rectangular QW
�finite or “infinitely” high� of the width a placed in a trans-
verse magnetic field B�. It was shown in Ref. 20 that, as B�

increases from zero to high values, the electric quantization
goes over to the magnetic quantization �Landau levels�. The
important parameter in the problem is a /L, where L
= �� /eB�1/2 is the magnetic radius. When a /L1, the motion
�and quantization� is of the electric type; for a /L�1 the
motion �and quantization� is of the magnetic type.

Next, we consider a structure of two rectangular quantum
wells made of GaAs and Ga1−xAlxAs. As before, the well
width is a=20 nm, the barrier width is b=8 nm, and the
barrier height is 240 meV. The center of magnetic oscilla-
tions y0=kxL

2 is chosen at the center of the right well. To
simplify the problem we neglect the spin energies, band’s
nonparabolicity, and mass difference between GaAs and
Ga1−xAlxAs, taking m0

�=0.066m0. Thus, we solve the simple
Schrodinger equation

� − �2�2

2m0
� � y2 + V�y� +

m0
��c

2

2
�y − y0�2�	 = E	 , �23�

using the standard boundary conditions. Here �c=eB /m0
�.

FIG. 6. “Transport” mass calculated directly for
GaAs /Ga1−xAlxAs superlattices: 1 /mtr= �1 /�2kz���E�kz�� /�kz�, com-
pared to calculated values of �m�

c �2 /m�
c versus Al content x in the

barriers. Full squares indicate experimental values of �m�
c �2 /m�

c as
determined in Ref. 19.
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In Fig. 7 we show the calculated electron energies plotted
versus increasing magnetic field B�. For vanishing B� we
obtain, as expected, electric quantization similar to that in a
single QW. The difference is that, instead of single levels
�without spin�, the levels occur in pairs. For high B� the
situation is again similar to a single well, i.e., one has the
Landau levels. However, in the intermediate range of B� we
deal with an unexpected picture. Higher levels of each “elec-
tric” pair move upward with B� much faster than the lower
levels, they undergo anticrossings with the upper slowly
moving levels and form, in an overall behavior, separate set
of energy levels moving upwards with B� much faster than
the regular Landau levels. They have roughly E�B���B�

1.94

dependence. Clearly, electrons in the center of the left well
will have the same energies since their location is exactly
symmetric to the one considered above. Thus, we believe
that the situation shown in Fig. 7 is quite realistic.

A somewhat similar behavior of energy levels is observed
for a donor atom in a magnetic field B. At vanishing B one
deals with hydrogenlike electric levels. For low B these lev-
els undergo diamagnetic shifts, at high B the Landau levels
are formed, each having a ladder of donor levels attached to
it.24

In order to get some insight into the level behavior indi-
cated in Fig. 7, we show evolutions of the wave functions for
the lowest pair of levels, see Fig. 8. At B��0, the lower
level 0l is described by a symmetric function and the upper
one 0u by an antisymmetric function. At a low field B�

=0.2 T the 0l function begins to disappear in the right QW
and the 0u function begins to disappear in the left QW. At
B��1 T this process is practically finished; the 0l function
is completely in the right QW and it stays there at all higher
B�, so the 0l energy behaves like in a one-well system and it
begins to represent the n=0 Landau level. The 0u function
stays in the left QW until a certain critical field B�

cr. It is in

this range of B� that the 0u energy changes quickly with B�

because the 0u function is at the shoulder of the magnetic
parabola. At the critical field, which for our QWs is about 5.5
T, the 0l function begins to “escape” from the left QW to the
right one. Once this process is accomplished at B�=6.5 T,
the 0l state behaves at higher B� like in a one-well system
and it begins to represent the n=1 Landau level. Clearly, the
above considerations do not really “explain” the appearance
of the “quadratic” levels moving quickly upwards with B�.
In particular, it is not intuitively clear why the antisymmetric

FIG. 7. Calculated energies of orbital electron states in
GaAs /Ga0.7Al0.3As two QWs versus transverse magnetic field in-
tensity B�. At B�=0 the levels are quantized into electric doublets,
at high fields one deals with the Landau levels. At intermediate
fields there appears a family of states whose energies have strong,
almost quadratic B� dependences, see text.

FIG. 8. Evolution of the wave functions describing two lowest
levels in an SL of two QWs for increasing transverse magnetic field
B�. The center of magnetic oscillations is chosen in the middle of
the right QW. As B� grows, the function 0l �solid line� moves into
the right QW while the function 0u �dashed line� moves first to the
left QW and then to the right QW, see text. Both QW profiles and
the magnetic parabola are also indicated.

FIG. 9. The same as in Fig. 7 but for an SL of four QWs. At
B�=0 the levels are quantized into minibands of four levels, at high
fields one deals with the Landau levels. At intermediate fields there
appear two families of states whose energies have strong quadrati-
clike B� dependences.
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function 0u moves first to the left QW at low B�. It is due to
this effect that the level 0u depends strongly on B�.

We performed similar calculations for SLs having more
QWs. The results for an SL of four QWs are shown in Fig. 9.
The center of magnetic potential is chosen in the middle of
the second QW from the rhs. The general scheme of levels is
similar to that shown in Fig. 7, but there also appear signifi-
cant differences. Of the four levels in each miniband at B�

=0 the lowest level behaves “normally” and goes at higher
fields to the n=0 Landau level. Two higher levels have very
similar behavior as functions of B� and they give rise to the
l=0 quadratic level. The new feature is that the fourth, high-
est level has an even stronger dependence on B� and gives
rise to another family of levels. The second new feature seen
in Fig. 9 is that certain levels go through the anticrossing
regions without any deflection. Otherwise the energies
shown in Figs. 7 and 9 are similar and the main new result
remains the same: there appear states characterized by
roughly quadratic dependences of their energies on the trans-
verse magnetic field B�. This conclusion is valid also for
SLs having many QWs.

The above states should be observable either in interband
magneto-optical transitions or in CR-like intraband transi-
tions. Belle et al.21,22 measured magnetophotoluminescence
in GaAs/GaAlAs superlattices for both B� and B� field con-
figurations but their experimental field of B=19 T was too

high to observe the states, cf. Fig. 9. A calculation of the
matrix elements for optical transitions between states of the
type shown in Fig. 8 offers some intricacies which we leave
to a future publication. To conclude, we emphasize again that
the results presented in Figs. 7–9 are calculated for a specific
value of the center of magnetic oscillations located in the
middle of the right �or left� quantum well. These points are
the most probable �but not the only possible� electron loca-
tions at low temperatures.

IV. SUMMARY

We considered theoretically electrons in
GaAs /Ga1−xAlxAs superlattices and described their spin and
orbital properties in the presence of an external longitudinal
and transverse magnetic field. The spin g values are com-
puted as functions of Ga1−xAlxAs barrier widths for different
GaAs well widths in both field configurations. Available
measurements of cyclotron effective masses are described
and a reasonable agreement between theory and experiment
is reached. Investigating short superlattices in a transverse
magnetic field B� we found, in addition to the standard elec-
tric and Landau states, unexpected orbital states having a
strong quadraticlike energy dependence E�B��. The origin of
the states is investigated.
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